PI3-kinase/Akt Pathway-Regulated Membrane Insertion of Acid-Sensing Ion Channel 1a Underlies BDNF-Induced Pain Hypersensitivity
نویسندگان
چکیده
منابع مشابه
PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity.
Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical h...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملPt718. Histamine Selectively Potentiates Acid-sensing Ion Channel 1a
Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine select...
متن کاملN-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling.
Acid-sensing ion channel-1a (ASIC1a) is a potential therapeutic target for multiple neurological diseases. We studied here ASIC1a glycosylation and trafficking, two poorly understood processes pivotal in determining the functional outcome of an ion channel. We found that most ASIC1a in the mouse brain was fully glycosylated. Inhibiting glycosylation with tunicamycin reduced ASIC1a surface traff...
متن کاملDynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death.
Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2012
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.4479-11.2012